1. Tremblay, R., Filiatrault, A., Timler, P. and Bruneau, M., 1995. Performance of steel structures during the 1994 Northridge earthquake. Canadian Journal of Civil Engineering, 22(2), pp.338-360. https://doi.org/10. 1139/l95-046.
2. Latour, M. and Rizzano, G., 2013. Full strength design of column base connections accounting for random material variability. Engineering Structures, 48, pp.458-471. https://doi.org/10.1016/j.engstruct.2012.09.026 .
3. Lim, W.Y., Lee, D. and You, Y.C., 2017. Exposed column-base plate strong-axis connections for small-size steel construction. Journal of Constructional Steel Research, 137, pp.286-296. https://doi.org/10.1016/j.jcsr.2017.06.018
4. Rodas, P.T., Zareian, F. and Kanvinde, A., 2016. Hysteretic model for exposed column–base connections. Journal of Structural Engineering, 142(12), p.04016137. https://doi.org /10.1061/(ASCE)ST.1943-541X.0001602.
5. Astaneh-Asl, A., 2008. Seismic behavior and design of base plates in braced frames. SteelTIPS, Technical Information and Product Service, Structural Steel Educational Council.
6. Gomez, I., Kanvinde, A. and Deierlein, G.G., 2010. Exposed column base connections subjected to axial compression and flexure. AISC, Chicago, 257.
7. Fahmy, M., 2000. Seismic behavior of moment-resisting steel column bases. University of Michigan.
8. Eurocode 3, (2005), Design of steel structures, part 1-8: Design of joints.
9. Vakili Sadeghi, H., Mirghaderi, S.R., Epackachi, S., Asgarpoor, M. and Gharavi, A., 2022. Numerical study on split base plate connection with concentric anchors between steel‐plate composite wall and concrete basemat. The Structural Design of Tall and Special Buildings, 31(11), p.e1937. https://doi.org /10.1002/tal.1937.
10. AISC-360., 2016. Specification for structural steel buildings. American Institute of Steel Construction.
11. Lee, C.K., Chiew, S.P. and Jiang, J., 2012. Residual stress study of welded high strength steel thin-walled plate-to-plate joints, Part 1: Experimental study. Thin-Walled Structures, 56, pp.103-112. https://doi.org/10.1016/j.tws.2012.03.015.
12.Wang, Y.B., Li, G.Q. and Chen, S.W., 2012. The assessment of residual stresses in welded high strength steel box sections. Journal of Constructional Steel Research, 76, pp.93-99. https://doi.org/10.1016/j.jcsr.2012.03.025.
13. Mohandas, T., Reddy, G.M. and Kumar, B.S., 1999. Heat-affected zone softening in high-strength low-alloy steels. Journal of Materials Processing Technology, 88(1-3), pp.284-294. . https://doi.org/10.1016/S0924-0136(98)00404-X.
14. Gáspár, M., 2019. Effect of welding heat input on simulated HAZ areas in S960QL high strength steel. Metals, 9(11), p.1226. https://doi.org/10.3390/met9111226.
15. Chen, C., Zhang, X., Zhao, M., Lee, C.K., Fung, T.C. and Chiew, S.P., 2017, February. Effects of welding on the tensile performance of high strength steel T-stub joints. In Structures 9, pp. 70-78. Elsevier Elsevier. https://doi.org/10.1016/j.istruc .2016.09.008.
16. Björk, T., Ahola, A. and Tuominen, N., 2018. On the design of fillet welds made of ultra-high-strength steel. Welding in the World, 62, pp.985-995. doi.org/10.1007/s40194-018-0624-4.
17. Barzegar-Mohammadi, S., Haghpanahi, M., Zeinoddini, M. and Miresmaeili, R., 2023, April. Cooling rate effects on fatigue life prediction using hardness measurements for in-service steel patch-welds with and without TIG dressing treatment. In Structures 50, pp. 1285-1302. Elsevier. Elsevier. https://doi.org/ 10.1016/j.istruc.2023.02.019.
18. Tajik, N., Mirghaderi, S.R., Asghari, A. and Hamidia, M., 2024. Experimental and numerical study on weld strengths of built-up steel box columns. Journal of Constructional Steel Research, 213, p.108362. https://doi.org/10.1016/j.jcsr.2023. 108362.
19. Kamtekar, A.G., 1982. A new analysis of the strength of some simple fillet welded connections. Journal of Constructional Steel Research, 2(2), pp.33-45. https://doi.org/10.1016/0143-974X(82)90024-4.
20. Nie, C. and Dong, P., 2012. A traction stress based shear strength definition for fillet welds. The Journal of Strain Analysis for Engineering Design, 47(8), pp.562-575. https:// doi.org/10.1177/0309324712456646 .
21. AWS-D1.4/D1.4M., 2018. Structural Welding Code Steel Reinforcing Bars. American Welding Society.
22. ACI 318-19., 2019. Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA.
23. American Welding Society. Structural Welding Committee, American Welding Society and American National Standards Institute, 2020. Structural Welding Code--steel. American Welding Society.
24. de Normalisation, C.E., 2005. Eurocode 3: design of steel structures− part 1-10: material toughness and through-thickness properties. EN 1993-1-10, Comité Européen de Normalisation, Brussels.
25. AWS-B1.10M/B1.10., 2016. Guide for the Non-destructive Examination of Welds. American Welding Society.
26. Ekstrom, M.P., 2012. Digital image processing techniques 2. Academic Press.
27. Pan, B., Xie, H., Wang, Z., Qian, K. and Wang, Z., 2008. Study on subset size selection in digital image correlation for speckle patterns. Optics express, 16(10), pp.7037-7048. https://doi.org/10.1364/OE. 16.007037.
28. Idhar, R.A., Sjah, J., Handika, N. and Tjahjono, E., 2020, May. Evaluation of loading rate to the stress-strain response of reinforcing steel bar. In IOP Conference Series: Materials Science and Engineering 801(1), p. 012016). IOP Publishing. http://dx.doi.org/10.1088/1757-899X/801/1/012016.
29. Callister Jr, W.D. and Rethwisch, D.G., 2020. Materials science and engineering: an introduction. John wiley and sons.
30. GOM Correlate. GOM—Precise Industrial 3D Metrology.Braunschweig, Germany. Available online:https://www.gom.com/index.html