ارزیابی روابط برآورد افت هیدرولیکی و واسنجی رابطه ی هیزن-ویلیامز درلاترال‌های آبیاری قطره یی

نوع مقاله : پژوهشی

نویسندگان

1 دانشکده‌ی فناوری کشاورزی، دانشگاه تهران، پاکدشت، ایران

2 مؤسسه‌ی تحقیقات فنی و مهندسی کشاورزی، کرج، ایران.

3 گروه علوم و فناوری های محیطی، دانشکده‌ی مهندسی انرژی و منابع پایدار، دانشگاه تهران، تهران، ایران

4 دانشکده‌ی مهندسی منابع آب، دانشگاه رایس، هوستون، تگزاس، امریکا

5 گروه مهندسی آبیاری و آبادانی، دانشکده‌ی کشاورزی، دانشگاه تهران، کرج، ایران

10.24200/j30.2024.62619.3234

چکیده

در طراحی سیستم‌های آبیاری قطره‌‌یی برای تعیین مقدار افت هیدرولیکی معمولاً از رابطه‌ی هیزن- ویلیامز استفاده می‌شود. در پژوهش حاضر، با استفاده از مدل‌های آزمایشگاهی و کاربرد لوله‌های پلی‌اتیلن با قطرهای 16، 20، 25، و32 میلی‌متر، میزان افت هیدرولیکی به ازاء دبی‌های مختلف و با توجه به محدوده‌ی سرعت مجاز اندازه‌گیری شد. سپس با تحلیل داده‌های مشاهداتی، رابطه‌ی جدیدی که مقدار افت هیدرولیکی را در لوله‌های 16 تا 32 میلی‌متر تابعی از دبی و قطر لوله محاسبه می‌کند، به‌دست آمد. رابطه‌ی ریاضی به‌دست‌آمده با نتایج حاصل از روش‌های متداول اندازه‌گیری افت هیدرولیکی و همچنین داده‌های محاسباتی مقایسه شد. مطابق با نتایج مطالعه‌ی حاضر، رابطه‌ی به‌دست‌آمده برای لوله‌های پلی‌اتیلن با قطرهای 16 الی 32 میلی‌متر و با عدد رینولدز بیش از 2000 با اطمینان بالایی پیشنهاد می‌شود. از مزایای رابطه‌ی به‌دست‌آمده، استقلال آن از ضریب افت C و دقت بالای آن است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

EVALUATION OF THE WIDELY-USED EQUATIONS OF HYDRAULIC LOSS CALCULATION AND CALIBRATION OF THE HAZEN-WILLIAMS EQUATION IN DRIP IRRIGATION LATERALS

نویسندگان [English]

  • Sh. Shafaei 1
  • Gh. Zarei 2
  • K. Ebrahimi 3
  • Sh. Soleimani 4
  • M. Shamsi 5
1 Graduated MSc. in Faculty of Irrigation and Drainage Engineering, University of Tehran, Karaj, IRAN.
2 Associate Professor, Agricultural Engineering Research Institute, Ministry of Agriculture – Jahad, Karaj, IRAN.
3 * Professor Department of Environmental Sciences and Technologies, Faculty of Energy and Sustainable Resources Engineering, University of Tehran, Tehran, IRAN.
4 Postdoc Associate, Rice University, Houston, Texas, United States,
5 Graduated MSc. in Faculty of Irrigation and Drainage Engineering, University of Tehran, Karaj, IRAN.
چکیده [English]

Hazen-William’s equation is usually used to determine the hydraulic head loss when designing drip irrigation systems. The mentioned equation is suggested for pipes with diameters greater than 75 mm and flow rates above 2.3 l/s. However, lateral pipes with 16 to 32 mm diameters are generally used for trickle irrigation. In this case, the calculated hydraulic head loss is lower than the actual hydraulic head loss, and subsequently, the hydraulic pressure at the desired point will be lower than the required value. In other words, the output flow from the droppers will be reduced, and the water distribution uniformity will be less than expected. Herein, using laboratory models and polyethylene pipes with a diameter of 16, 20, 25, and 32 mm, the amount of hydraulic loss was measured for different flow rates and according to the permissible velocity limits. Hydraulic pressures were measured using a data logger, with one record for each second, and the discharge was adjusted volumetrically. A bypass pipe was installed on the physical model to control the discharge and the hydraulic pressure. The amount of hydraulic head loss was measured for different flow rates in the permissible flow velocity range (1-2 m/s). Then, by analyzing the recorded data, a new relationship was obtained that calculates the amount of hydraulic head loss in 16 to 32-mm pipes as a flow rate and pipe diameter function. The Hazen-Williams equation was compared with the results of Moody, Churchill, and Colebrook methods and the actual measured values. According to the results, the most significant error between the measured and the calculated head loss was for the Colebrook & White equation for the 25 mm pipe, and the smallest error was for the same equation for the 32 mm pipe. The obtained relationship is recommended for polyethylene pipes with a diameter of 16 to 32 mm and a Reynolds number above 2000 with high confidence. One of the advantages of the obtained relationship is its independence from the Hazen-Williams roughness coefficient and its remarkable accuracy.

کلیدواژه‌ها [English]

  • Drip irrigation
  • hydraulic loss
  • laboratory model
  • Hazen-Williams
1. Afshar, M. and Sotoodeh, M. H., 2006. Application of nonlinear programming methods to the optimal design of sewer networks. Sharif Journal of Civil Engineering, 22(35), pp. 3-11. [In Persian]. 2. R. Daneshfaraz, R., Sadeqfam, R. and M. Majedi-Asl, M., 2011. The effect of non-linear terms on the process of computing water hammer with regard to friction coefficient for different cast iron pipe. International Journal of Engineering & Applied Sciences (IJEAS), 3(3), pp. 15-22. 3. Shamloo, H., Mousavi Fard, S. M. and Haghighi, A., 2013. Investigation of unsteady effects of frictio n loss and transient flow using 1d energy relations. Sharif Journal of Civil Engineering, Volume 29-2(1), pp. 149-157 [In Persian]. 4. Daneshfaraz, R., Rezazadeh joudi, A. and Abraham, J., 2017. Numerical investigation on the effect of sudden contraction on flow behavior in a 90-degree bend. KSCE Journal of Civil Engineering, 22(2), pp. 603-612. doi: 10.1007/s12205-017-1313-3. 5. Hassan, A., 2017. Design of sprinkler irrigation tapered main line by linear programming. Misr Journal of Agricultural Engineering, 34(3), pp. 1335-1350. doi: 10.21608/mjae.2017.97468. 6. Tas, E. and Ağıralioğlu, N., 2018. Comparison of friction losses in long polyethylene pipe systems using different formulas. International Symposium on Urban Water and Wastewater Management, pp. 602-609. 7. Monge-Freile, M., Sánchez-Delgado, M., Huanca-Velarde, L. and Moreno-Llacza, A., 2019. Bamboo (Guadua angustifolia spp.) as a conduction alternative for a multi floodgates irrigation system. Lima, Perú. Anales Científicos, 80(1), pp. 240-252. doi: 10.21704/ac.v80i1.1391. 8. Tabesh, M. and Kazemi Soochelmaei, M., 2018. Studying the effect of factors influencing the change in hazen-williams roughness coefficient of cast iron pipes during operation period. Journal of Water and Wastewater Science and Engineering, 3(2), pp. 23-34. [In Persian]. doi: 10.22112/jwwse.2018.129924.1089. 9. Jamil, R. and Mujeebu, M. A., 2019. Empirical relation between Hazen-Williams and Darcy-Weisbach equations for cold and hot water flow in plastic pipes. Imam, Saudi Arabia. WATER, 108(6), pp. 104-114. 10. Wang, J. and Chen, R., 2020. An improved finite element model for the hydraulic analysis of drip irrigation subunits considering local emitter head loss. Irrigation Science, 38(2), pp. 147-162. doi: 10.1007/s00271-019-00656-0. 11. González-Quirino, J. G., Fortis-Hernández, M., Preciado-Rangel, P., Yescas-Coronado, P., Barrios-Díaz, J. M. and Reyes-González, A., 2021. Deterministic equation for hydraulic system design multiple outlet irrigation. Revista Mexicana de Ciencias Agrícolas, 12(5), pp. 777-789. doi: 10.29312/remexca.v12i5.2986. 12. Achour, B. and Amara, L., 2020. Theoretical considerations on flow regime dependency of the Hazen-Williams coefficient. LARHYSS Journal, 9728(42), pp. 53-62. 13. Pizzo, H. D. S., Dantas, C. A. S. and Ribeiro, C. B. M., 2022. Fitting Hazen-Williams Roughness Coefficient to the Head Loss Obtained by Darcy-Weisbach Equation in PVC Pipes. Advance Researches in Civil Engineering, 4(1), pp. 1-14. doi: 10.30469/arce.2022.150292. 14. Tourasse, E., 1986. Explicit equation for coefficient of friction and duct calculation. Eng. Sanit, 25(2), pp. 177-178. 15. Dini, M., Abbaspoor, G. and Saghebian, S. A., 2023. Calibration of water distribution networks by considering the uncertainty of nodal pressure. Journal of Water and Wastewater Science and Engineering, 8(3), pp. 13-24. [In Persian]. doi: 10.22112/jwwse.2023.350090.1320. 16. Keller, J. and Bliesner, R. D., 1990. Trickle irrigation planning factors. Springer US, pp. 453-477. doi: 10.1007/978-1-4757-1425-8_19. 17. Manning, F. S. and Thompson, R. E., 1995. Oilfield processing of petroleum: Crude oil (Vol. 2). Pennwell books, pp. 183-185. doi: 10.1016/j.energy.2005.10.009. 18. Colebrook, C. F. and White, C. M., 1937. Experiments with fluid friction in roughened pipes. Proceedings of The Royal Society of London. Series a, Mathematical and Physical Sciences, pp. 367-381. doi: 10.1098/rspa.1937.0150. 19. Moody, L. F., 1944. Friction factors for pipe flow. Trans. Asme, 66(8), pp. 671-684. doi: 10.1115/1.4018140. 20. Churchilll, S. W. and Usagi, R., 1972. A general expression for the correlation of rates of transfer and other phenomena. AIChE Journal, 18(6), pp. 1121-1128. doi: 10.1002/aic.690180606. 21. Churchilll, S. W., 1977. Friction-factor equation spans all fluid-flow regimes. Chemical Engineering, 84(24), pp. 91-92. 22. Miranda, E. P., Custodio, T. B. D. S., DE LIMA, F. U., Pereira, T. A. and Bicudo, A. L. R., 2019. Adjustment of the hazen-willians equation for determination of continuous pressure drop in PVC pipe. IRRIGA, 16(2), pp. 94-100. doi: 10.15809/irriga.2019v1n1p94-100. 23. Lu, Y., Liu, H., Liu, Z. and Yan, C., 2020. Investigation and parameterization of transition shielding in roughness-disturbed boundary layer with direct numerical simulations. Physics of Fluids, 32(7), pp. 251-260. doi: 10.1063/5.0012464.